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Abstract 21	

Isoprene emitted by vegetation is an important precursor of secondary organic aerosol 22	
(SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the 23	
humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase 24	
mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation 25	
scheme. The mechanism is based on aerosol reactive uptake coefficients (γ) for water-soluble 26	
isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile 27	
concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based 28	
(SOAS) observations over the Southeast US in summer 2013 using the GEOS-Chem chemical 29	
transport model. Emissions of nitrogen oxides (NOx ≡ NO + NO2) over the Southeast US are 30	
such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with 31	
both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of 32	
isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, 33	
consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a 34	
product of isoprene oxidation). Isoprene SOA production is mainly contributed by two 35	
immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58% of isoprene SOA) from the 36	
low-NOx pathway and glyoxal (28%) from both low- and high-NOx pathways. This speciation is 37	
consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a 38	
strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect 39	
of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx 40	
emissions decrease (favoring the low-NOx

 pathway for isoprene oxidation), but decrease more 41	
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strongly as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume). 42	
The US EPA projects 2013-2025 decreases in anthropogenic emissions of 34% for NOx (leading 43	
to 7% increase in isoprene SOA) and 48% for SO2 (35% decrease in isoprene SOA). Reducing 44	
SO2 emissions decreases sulfate and isoprene SOA by a similar magnitude, representing a factor 45	
of 2 co-benefit for PM2.5 from SO2 emission controls.  46	
 47	
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1. Introduction 51	

Isoprene emitted by vegetation is a major source of secondary organic aerosol (SOA) 52	

(Carlton et al., 2009, and references therein) with effects on human health, visibility, and climate. 53	

There is large uncertainty in the yield and composition of isoprene SOA (Scott et al., 2014; 54	

McNeill et al., 2014), involving a cascade of species produced in the gas-phase oxidation of 55	

isoprene and their interaction with pre-existing aerosol (Hallquist et al., 2009). We develop here 56	

a new aqueous-phase mechanism for isoprene SOA formation coupled to gas-phase chemistry, 57	

implement it in the GEOS-Chem chemical transport model (CTM) to simulate observations in 58	

the Southeast US, and from there derive new constraints on isoprene SOA yields and the 59	

contributing pathways. 60	

Organic aerosol is ubiquitous in the atmosphere, often dominating fine aerosol mass 61	

(Zhang et al., 2007), including in the Southeast US where it accounts for more than 60% in 62	

summer (Attwood et al., 2014). It may be directly emitted by combustion as primary organic 63	

aerosol (POA), or produced within the atmosphere as SOA by oxidation of volatile organic 64	

compounds (VOCs). Isoprene (C5H8) from vegetation is the dominant VOC emitted globally, 65	

and the Southeast US in summer is one of the largest isoprene-emitting regions in the world 66	

(Guenther et al., 2006). SOA yields from isoprene are low compared with larger VOCs (Pye et 67	

al., 2010), but isoprene emissions are much higher. Kim et al. (2015) estimated that isoprene 68	

accounts for 40% of total organic aerosol in the Southeast US in summer.  69	

Formation of OA from oxidation of isoprene depends on local concentrations of nitrogen 70	

oxide radicals (NOx ≡ NO + NO2) and pre-existing aerosol. NOx concentrations determine the 71	

fate of organic peroxy radicals originating from isoprene oxidation (ISOPO2), leading to 72	

different cascades of oxidation products in the low-NOx and high-NOx pathways (Paulot et al., 73	
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2009a; 2009b). Uptake of isoprene oxidation products to the aerosol phase depends on their 74	

vapor pressure (Donahue et al., 2006), solubility in aqueous media (Saxena and Hildeman, 75	

1996), and subsequent condensed-phase reactions (Volkamer et al., 2007). Aqueous aerosol 76	

provides a medium for reactive uptake (Eddingsaas et al., 2010; Surratt et al., 2010) with 77	

dependences on acidity (Surratt et al., 2007a), concentration of nucleophiles such as sulfate 78	

(Surratt et al., 2007b), aerosol water (Carlton and Turpin, 2013), and organic coatings (Gaston et 79	

al., 2014). 80	

We compile in Fig. 1 the published laboratory yields of isoprene SOA as a function of 81	

initial NO concentration and relative humidity (RH). Here and elsewhere, the isoprene SOA 82	

yield is defined as the mass of SOA produced per unit mass of isoprene oxidized. Isoprene SOA 83	

yields span a wide range, from <0.1% to >10%, with no systematic difference between low-NOx 84	

and high-NOx pathways. Yields tend to be higher in dry chambers (RH < 10%). Under such dry 85	

conditions isoprene SOA is expected to be solid (Virtanen et al., 2010; Song et al., 2015). At 86	

humid conditions more representative of the summertime boundary layer, aerosols are likely 87	

aqueous (Bateman et al., 2014). Standard isoprene SOA mechanisms used in atmospheric models 88	

assume reversible partitioning onto pre-existing organic aerosol, fitting the dry chamber data 89	

(Odum et al., 1996). However, this may not be appropriate for actual atmospheric conditions 90	

where aqueous-phase chemistry with irreversible reactive uptake of water-soluble gases is likely 91	

the dominant mechanism (Ervens et al., 2011; Carlton and Turpin, 2013). Several regional/global 92	

models have implemented mechanisms for aqueous-phase formation of isoprene SOA (Fu et al., 93	

2008, 2009; Carlton et al., 2008; Myriokefalitakis et al., 2011; Liu et al., 2012; Pye et al., 2013; 94	

Lin et al., 2014). 95	
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Here we present a mechanism for irreversible aqueous-phase isoprene SOA formation 96	

integrated within a detailed chemical mechanism for isoprene gas-phase oxidation, thus linking 97	

isoprene SOA formation to gas-phase chemistry and avoiding more generic volatility-based 98	

parameterizations that assume dry organic aerosol (Odum et al., 1996; Donahue et al., 2006). We 99	

use this mechanism in the GEOS-Chem CTM to simulate observations from the SOAS (surface) 100	

and SEAC4RS (aircraft) field campaigns over the Southeast US in summer 2013, with focus on 101	

isoprene SOA components and on the relationship between OA and formaldehyde (HCHO). 102	

HCHO is a high-yield oxidation product of isoprene (Palmer et al., 2003) and we use the OA-103	

HCHO relationship as a constraint on isoprene SOA yields. SOAS measurements were made at a 104	

ground site in rural Centreville, Alabama (Hu et al., 2015; http://soas2013.rutgers.edu/). 105	

SEAC4RS measurements were made from the NASA DC-8 aircraft with extensive boundary 106	

layer coverage across the Southeast (Toon et al., 2016; SEAC4RS Archive). 107	

 108	

2. Chemical mechanism for isoprene SOA formation 109	

The default treatment of isoprene SOA in GEOS-Chem at the time of this work (v9-02; 110	

http://geos-chem.org) followed a standard parameterization operating independently from the 111	

gas-phase chemistry mechanism and based on reversible partitioning onto pre-existing OA of 112	

generic semivolatile products of isoprene oxidation by OH and NO3 radicals (Pye et al., 2010). 113	

Here we implement a new mechanism for reactive uptake by aqueous aerosols of species 114	

produced in the isoprene oxidation cascade of the GEOS-Chem gas-phase mechanism. This 115	

couples SOA formation to the gas-phase chemistry and is in accord with increased evidence for a 116	

major role of aqueous aerosols in isoprene SOA formation (Ervens et al., 2011). 117	
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The standard gas-phase isoprene oxidation mechanism in GEOS-Chem v9-02 is 118	

described in Mao et al. (2013) and is based on best knowledge at the time building on 119	

mechanisms for the oxidation of isoprene by OH (Paulot et al., 2009a; 2009b) and NO3 (Rollins 120	

et al., 2009). Updates implemented in this work are described below and in companion papers 121	

applying GEOS-Chem to simulation of observed gas-phase isoprene oxidation products over the 122	

Southeast US in summer 2013 (Fisher et al., 2016; Travis et al., 2016). Most gas-phase products 123	

of the isoprene oxidation cascade in GEOS-Chem have high dry deposition velocity, competing 124	

in some cases with removal by oxidation and aerosol formation (Nguyen et al., 2015a; Travis et 125	

al., 2016). 126	

Figure 2 shows the isoprene oxidation cascade in GEOS-Chem leading to SOA 127	

formation. Reaction pathways leading to isoprene SOA precursors are described below. Yields 128	

are in mass percent, unless stated otherwise. Reactive ISOPO2 isomers formed in the first OH 129	

oxidation step react with NO, the hydroperoxyl radical (HO2), other peroxy radicals (RO2), or 130	

undergo isomerization (Peeters et al., 2009). The NO reaction pathway (high-NOx pathway) 131	

yields C5 hydroxy carbonyls, methyl vinyl ketone, methacrolein, and first-generation isoprene 132	

nitrates (ISOPN). The first three products go on to produce glyoxal and methylglyoxal, which 133	

serve as SOA precursors. The overall yield of glyoxal from the high-NOx pathway is 7 mol % 134	

(yield on a molar basis). Oxidation of ISOPN by OH and O3 is as described by Lee et al. (2014). 135	

Reaction of ISOPN with OH produces saturated dihydroxy dinitrates (DHDN), 21 and 27 mol % 136	

from the beta and delta channels respectively (Lee et al., 2014), and 10 mol % isoprene 137	

epoxydiols (IEPOX) from each channel (Jacobs et al., 2014). We also adopt the mechanism of 138	

Lin et al. (2013) to generate C4 hydroxyepoxides (methacrylic acid epoxide and 139	

hydroxymethylmethyl-α-lactone, both denoted MEPOX) from OH oxidation of a 140	
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peroxyacylnitrate formed when methacrolein reacts with OH followed by NO2. Only 141	

hydroxymethylmethyl-α-lactone is shown in Fig. 2. 142	

The HO2 reaction pathway for ISOPO2 leads to formation of hydroxyhydroperoxides 143	

(ISOPOOH) that are oxidized to IEPOX (Paulot et al., 2009b) and several low-volatility 144	

products, represented here as C5-LVOC (Krechmer et al., 2015). The kinetics of IEPOX 145	

oxidation by OH is uncertain, and experimentally determined IEPOX lifetimes vary from 8 to 28 146	

h for an OH concentration of 1 × 106 molecules cm-3 (Jacobs et al., 2013; Bates et al., 2014). In 147	

GEOS-Chem we apply the fast kinetics of Jacobs et al. (2013) and reduce the yield of IEPOX 148	

from ISOPOOH from 100 to 75%, within the range observed by St. Clair et al. (2016), to address 149	

a factor of 4 overestimate in simulated IEPOX pointed out by Nguyen et al. (2015a). The IEPOX 150	

discrepancy could alternatively be addressed with an order-of-magnitude increase in uptake by 151	

aerosol (see below) but the model would then greatly overestimate the observed IEPOX SOA 152	

concentrations in SOAS and SEAC4RS (Section 4). 153	

 IEPOX oxidizes to form glyoxal and methylglyoxal (Bates et al., 2014). The overall 154	

glyoxal yield from the ISOPO2 + HO2 pathway is 6 mol %. Krechmer et al. (2015) report a 2.5 155	

mol % yield of C5-LVOC from ISOPOOH but we reduce this to 0.5 mol % to reproduce surface 156	

observations of the corresponding aerosol products (Section 4). Methyl vinyl ketone and 157	

methacrolein yields from the ISOPO2 + HO2 pathway are 2.5 and 3.8 mol %, respectively (Liu et 158	

al., 2013), sufficiently low that they do not lead to significant SOA formation.  159	

Minor channels for ISOPO2 are isomerization and reaction with RO2. Isomerization 160	

forms hydroperoxyaldehydes (HPALD) that go on to photolyze, but products are uncertain 161	

(Peeters and Müller, 2010). We assume 25 mol % yield each of glyoxal and methylglyoxal from 162	

HPALD photolysis in GEOS-Chem following Stavrakou et al. (2010). Reaction of ISOPO2 with 163	
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RO2 leads to the same suite of C4-C5 carbonyls as reaction with NO (C5 hydroxy carbonyls, 164	

methacrolein, and methyl vinyl ketone) and from there to glyoxal and methylglyoxal.  165	

Immediate aerosol precursors from the isoprene + OH oxidation cascade are identified in 166	

Fig. 2. For the high-NOx pathway (ISOPO2 + NO channel) these include glyoxal and 167	

methylglyoxal (McNeill et al., 2012), ISOPN (Darer et al., 2011; Hu et al., 2011), DHDN (Lee et 168	

al., 2014), MEPOX (Lin et al., 2013), and IEPOX (Jacobs et al., 2014). For the low-NOx 169	

pathway (ISOPO2 + HO2 channel) aerosol precursors are IEPOX (Eddingsaas et al., 2010), C5-170	

LVOC (Krechmer et al., 2015, in which the aerosol-phase species is denoted ISOPOOH-SOA), 171	

glyoxal, and methylglyoxal. Glyoxal and methylglyoxal are also produced from the ISOPO2 + 172	

RO2 and ISOPO2 isomerization channels.  173	

Ozonolysis and oxidation by NO3 are additional minor isoprene reaction pathways (Fig. 174	

2). The NO3 oxidation pathway is a potentially important source of isoprene SOA at night 175	

(Brown et al., 2009) from the irreversible uptake of low-volatility second-generation 176	

hydroxynitrates (NT-ISOPN) (Ng et al., 2008; Rollins et al., 2009). We update the gas-phase 177	

chemistry of Rollins et al. (2009) as implemented by Mao et al. (2013) to include formation of 4 178	

mol % of the aerosol-phase precursor NT-ISOPN from first-generation alkylnitrates (Rollins et 179	

al., 2009). Ozonolysis products are volatile and observed SOA yields in chamber studies are low 180	

(< 1%; Kleindienst et al., 2007). In GEOS-Chem only methylglyoxal is an aerosol precursor 181	

from isoprene ozonolysis.  182	

We implement uptake of isoprene oxidation products to aqueous aerosols using 183	

laboratory-derived reactive uptake coefficients (γ) as given by Anttila et al. (2006) and Gaston et 184	

al. (2014): 185	

 186	
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Here α is the mass accommodation coefficient (taken as 0.1 for all immediate SOA precursors in 189	

Fig. 2), ω is the mean gas-phase molecular speed (cm s-1), r is the aqueous particle radius (cm), R 190	

is the universal gas constant (0.08206 L atm K-1 mol-1), T is temperature (K), H* is the effective 191	

Henry’s Law constant (M atm-1) accounting for any fast dissociation equilibria in the aqueous 192	

phase, and kaq is the pseudo first-order aqueous-phase reaction rate constant (s-1) for conversion 193	

to non-volatile products.  194	

Precursors with epoxide functionality, IEPOX and MEPOX, undergo acid-catalyzed 195	

epoxide ring opening and nucleophilic addition in the aqueous phase. The aqueous-phase rate 196	

constant formulation is from Eddingsaas et al. (2010), 197	
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and includes three channels: acid-catalyzed ring opening followed by nucleophilic addition of 201	

H2O ( in M-1 s-1) leading to methyltetrols, acid-catalyzed ring opening followed by 202	

nucleophilic addition of sulfate and nitrate ions (nuc ≡ SO4
2- + NO3

-, knuc in M-2 s-1) leading to 203	

organosulfates and organonitrates, and concerted protonation and nucleophilic addition by 204	

bisulfate, HSO4
- (kHSO4- in M-1 s-1), leading to organosulfates.  205	

Precursors with nitrate functionality (-ONO2), ISOPN and DHDN, hydrolyze to form 206	

low-volatility polyols and nitric acid (Hu et al., 2011; Jacobs et al., 2014), so kaq in Eq. (1) is the 207	

hydrolysis rate constant. 208	

k
H+
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 Glyoxal and methylglyoxal form SOA irreversibly by surface uptake followed by 209	

aqueous-phase oxidation and oligomerization to yield non-volatile products (Liggio et al., 2005; 210	

Volkamer et al., 2009; Nozière et al., 2009; Ervens et al., 2011; Knote et al., 2014). Glyoxal 211	

forms SOA with higher yields during the day than at night due to OH aqueous-phase chemistry 212	

(Tan et al., 2009; Volkamer et al., 2009; Summer et al., 2014). We use a daytime γ of 2.9 × 10-3 213	

for glyoxal from Liggio et al. (2005) and a nighttime γ of 5 × 10-6 (Waxman et al., 2013; Sumner 214	

et al., 2014). The SOA yield of methylglyoxal is small compared with that of glyoxal (McNeill et 215	

al., 2012). A previous GEOS-Chem study by Fu et al. (2008) used the same γ (2.9 × 10-3) for 216	

glyoxal and methylglyoxal. Reaction rate constants are similar for aqueous-phase processing of 217	

glyoxal and methylglyoxal (Buxton et al., 1997; Ervens et al., 2003), but H* of glyoxal is about 4 218	

orders of magnitude higher. Here we scale the γ for methylglyoxal to the ratio of effective 219	

Henry’s law constants: H* = 3.7 × 103 M atm-1 for methylglyoxal (Tan et al., 2010) and H*
 = 2.7 220	

× 107 M atm-1 for glyoxal (Sumner et al., 2014). The resulting uptake of methylglyoxal is very 221	

slow and makes a negligible contribution to isoprene SOA.  222	

The species C5-LVOC from ISOPOOH oxidation and NT-ISOPN from isoprene reaction 223	

with NO3 have very low volatility and are assumed to condense to aerosols with a γ of 0.1 224	

limited by mass accommodation. Results are insensitive to the precise value of γ since uptake by 225	

aerosols is the main sink for these species in any case. 226	

Table 1 gives input variables used to calculate γ for IEPOX, ISOPN, and DHDN by Eqs. 227	

(1) and (2). Rate constants are from experiments in concentrated media, representative of 228	

aqueous aerosols, so no activity correction factors are applied. Reported experimental values of 229	

kH+ vary by an order of magnitude from 1.2 × 10-3 M-1 s-1 (Eddingsaas et al., 2010) to 3.6 × 10-2 230	

M-1 s-1 (Cole-Filipiak et al., 2010). Values of knuc vary by 3 orders of magnitude from 2 × 10-4 M-231	
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2 s-1 (Eddingsaas et al., 2010) to 5.2 × 10-1 M-2 s-1 (Piletic et al., 2013). Reported values of 232	

IEPOX H* vary by two orders of magnitude (Eddingsaas et al., 2010; Nguyen et al., 2014). We 233	

chose values of kH+, knuc, and H* to fit the SOAS and SEAC4RS observations of total IEPOX 234	

SOA and IEPOX organosulfates, as discussed in Section 4. 235	

Table 2 lists average values of γ for all immediate aerosol precursors in the Southeast US 236	

boundary layer in summer as simulated by GEOS-Chem (Section 3). γ for IEPOX is a strong 237	

function of pH and increases from 1 × 10-4 to 1 × 10-2 as pH decreases from 3 to 0. Gaston et al. 238	

(2014) reported order-of-magnitude higher values of γ for IEPOX, reflecting their use of a higher 239	

H*, but this would lead in our model to an overestimate of IEPOX SOA observations (Section 4). 240	

The value of γ for MEPOX is assumed to be 30 times lower than that of IEPOX when the aerosol 241	

is acidic (pH < 4), due to slower acid-catalyzed ring opening (Piletic et al., 2013; Riedel et al., 242	

2015). At pH > 4 we assume that γ for IEPOX and MEPOX are the same (Riedel et al., 2015), 243	

but they are then very low. 244	

Isoprene SOA formation in clouds is not considered here. Acid-catalyzed pathways 245	

would be slow. Observations show that the isoprene SOA yield in the presence of laboratory-246	

generated clouds is low (0.2-0.4%; Brégonzio-Rozier et al., 2015). Wagner et al. (2015) found no 247	

significant production of SOA in boundary layer clouds over the Southeast US during SEAC4RS. 248	

 249	

3. GEOS-Chem simulation and isoprene SOA yields 250	

Several companion papers apply GEOS-Chem to interpret SEAC4RS and surface data 251	

over the Southeast US in summer 2013 including Kim et al. (2015) for aerosols, Fisher et al. 252	

(2016) for organic nitrates, Travis et al. (2016) for ozone and NOx, and Zhu et al. (2016) for 253	

HCHO. These studies use a model version with 0.25° × 0.3125° horizontal resolution over North 254	
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America, nested within a 4° × 5° global simulation. Here we use a 2° × 2.5° global GEOS-Chem 255	

simulation with no nesting. Yu et al. (2016) found little difference between 0.25° × 0.3125° and 256	

2° × 2.5° resolutions in simulated regional statistics for isoprene chemistry.  257	

The reader is referred to Kim et al. (2015) for a general presentation of the model, the 258	

treatment of aerosol sources and sinks, and evaluation with Southeast US aerosol observations; 259	

and to Travis et al. (2016) and Fisher et al. (2016) for presentation of gas-phase chemistry and 260	

comparisons with observed gas-phase isoprene oxidation products. Isoprene emission is from the 261	

MEGAN v2.1 inventory (Guenther et al., 2012). The companion papers decrease isoprene 262	

emission by 15% from the MEGAN v2.1 values to fit the HCHO data (Zhu et al., 2016), but this 263	

is not applied here.  264	

Our SOA simulation differs from that of Kim et al. (2015). They assumed fixed 3% and 265	

10% mass yields of SOA from isoprene and monoterpenes, respectively, and parameterized SOA 266	

formation from anthropogenic and open fire sources as a kinetic irreversible process following 267	

Hodzic and Jimenez (2011). Here we use our new aqueous-phase mechanism for isoprene SOA 268	

coupled to gas-phase chemistry as described in Section 2, and otherwise use the semivolatile 269	

reversible partitioning scheme of Pye et al. (2010) for monoterpene, anthropogenic, and open fire 270	

SOA. Kim et al. (2015) found no systematic bias in detailed comparisons to OA measurements 271	

from SEAC4RS and from surface networks. We find a low bias, as shown below, because the 272	

reversible partitioning scheme yields low anthropogenic and open fire SOA concentrations.  273	

Organic aerosol and sulfate contribute most of the aerosol mass over the Southeast US in 274	

summer, while nitrate is negligibly small (Kim et al., 2015). GEOS-Chem uses the ISORROPIA 275	

thermodynamic model (Fountoukis and Nenes, 2007) to simulate sulfate-nitrate-ammonium 276	

(SNA) aerosol composition, water content, and acidity as a function of local conditions. 277	
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Simulated aerosol pH along the SEAC4RS flight tracks in the Southeast US boundary layer 278	

averages 1.3 (interquartiles 0.92 and 1.8). The aerosol pH remains below 3 even when sulfate 279	

aerosol is fully neutralized by ammonia (Guo et al., 2015).  280	

We consider that the aqueous aerosol population where isoprene SOA formation can take 281	

place is defined by the sulfate aerosol population. This assumes that all aqueous aerosol particles 282	

contain some sulfate, and that all sulfate is aqueous. Clear-sky RH measured from the aircraft in 283	

the Southeast US boundary layer during SEAC4RS averaged 72 ± 17%, and the corresponding 284	

values in GEOS-Chem sampled along the flight tracks averaged 66 ± 16%). These RHs are 285	

sufficiently high that sulfate aerosol can reliably be expected to be aqueous (Wang et al., 2008). 286	

The rate of gas uptake by the sulfate aerosol is computed with the pseudo-first order reaction rate 287	

constant khet (s-1) (Schwartz, 1986; Jacob, 2000): 288	

 289	

khet = 4πr2
0

∞

∫ r
Dg

+
4
γω

#

$
%
%

&

'
(
(

−1

n(r)dr         (3), 290	

 291	

where Dg is the gas-phase diffusion constant (taken to be 0.1 cm2 s-1) and n(r) is the number size 292	

distribution of sulfate aerosol (cm-4). The first and second terms in parentheses describe the 293	

limitations to gas uptake from gas-phase diffusion and aqueous-phase reaction, respectively.   294	

The sulfate aerosol size distribution including RH-dependent hygroscopic growth factors 295	

is from the Global Aerosol Data Set (GADS) of Koepke et al. (1997), as originally implemented 296	

in GEOS-Chem by Martin et al. (2003) and updated by Drury et al. (2010). The GADS size 297	

distribution compares well with observations over the eastern US in summer (Drury et al., 2010), 298	

including for SEAC4RS (Kim et al., 2015). We compute n(r) locally in GEOS-Chem by taking 299	
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the dry SNA mass concentration, converting from mass to volume with a dry aerosol mass 300	

density of 1700 kg m-3 (Hess et al., 1998), applying the aerosol volume to the dry sulfate size 301	

distribution in GADS, and then applying the GADS hygroscopic growth factors. We verified that 302	

the hygroscopic growth factors from GADS agree within 10% with those computed locally from 303	

ISORROPIA.  304	

Figure 2 shows the mean branching ratios for isoprene oxidation in the Southeast US 305	

boundary layer as calculated by GEOS-Chem. 87% of isoprene reacts with OH, 8% with ozone, 306	

and 5% with NO3. Oxidation of isoprene by OH produces ISOPO2 of which 51% reacts with NO 307	

(high-NOx pathway), 35% reacts with HO2, 8% isomerizes, and 6% reacts with other RO2 308	

radicals.  309	

Glyoxal is an aerosol precursor common to all isoprene + OH pathways in our 310	

mechanism with yields of 7 mol % from the ISOPO2 + NO pathway, 6 mol % from ISOPO2 + 311	

HO2, 11 mol % from ISOPO2 + RO2, and 25 mol % from ISOPO2 isomerization. For the 312	

Southeast US conditions we thus find that 44% of glyoxal is from the ISOPO2 + NO pathway, 313	

24% from ISOPO2 + HO2, 8% from ISOPO2 + RO2, and 24% from ISOPO2 isomerization. 314	

The mean total yield of isoprene SOA computed in GEOS-Chem for the Southeast US 315	

boundary layer is 3.3%, as shown in Fig. 2. IEPOX contributes 1.9% and glyoxal 0.9%. The low-316	

NOx pathway involving ISOPO2 reaction with HO2 contributes 73% of the total isoprene SOA 317	

yield, mostly from IEPOX, even though this pathway is only 35% of the fate of ISOPO2. The 318	

high-NOx pathway contributes 16% of isoprene SOA, mostly from glyoxal. MEPOX 319	

contribution to isoprene SOA is small (2%) and consistent with a recent laboratory study that 320	

finds low SOA yields from this pathway under humid conditions (Nguyen et al., 2015b). The 321	

minor low-NOx pathways from ISOPO2 isomerization and reaction with RO2 contribute 8% of 322	
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isoprene SOA through glyoxal. The remainder of isoprene SOA formation (3%) is from 323	

nighttime oxidation by NO3.  324	

The dominance of IEPOX and glyoxal as precursors for isoprene SOA was previously 325	

found by McNeill et al. (2012) using a photochemical box model. Both IEPOX and glyoxal are 326	

produced photochemically, and both are removed photochemically in the gas phase by reaction 327	

with OH (and photolysis for glyoxal). The mean lifetimes of IEPOX and glyoxal against gas-328	

phase photochemical loss average 1.6 and 2.3 h respectively for SEAC4RS daytime conditions; 329	

mean lifetimes against reactive uptake by aerosol are 31 and 20 hours, respectively. For both 330	

species, aerosol uptake is thus a minor sink competing with gas-phase photochemical loss. 331	

Although we have assumed here the fast gas-phase kinetics from Jacobs et al. (2013) for the 332	

IEPOX + OH reaction, this result would not change if we used the slower kinetics from Bates et 333	

al. (2014).  334	

The dominance of gas-phase loss over aerosol uptake for both IEPOX and glyoxal 335	

implies that isoprene SOA formation is highly sensitive to their reactive uptake coefficients γ and 336	

to the aqueous aerosol mass concentration (in both cases, γ is small enough that uptake is 337	

controlled by bulk aqueous-phase rather than surface reactions). We find under SEAC4RS 338	

conditions that γ for IEPOX is mainly controlled by the H+ concentration (kH+[H+] in Eq. (2)), 339	

with little contribution from nucleophile-driven and HSO4
--driven channels, although this is 340	

based on highly uncertain rate constants (Section 2). Consistency with SOAS and SEAC4RS 341	

observations will be discussed below. 342	

The 3.3% mean yield of isoprene SOA from our mechanism is consistent with the fixed 343	

yield of 3% assumed by Kim et al. (2015) in their GEOS-Chem simulation of the SEAC4RS 344	

period, including extensive comparisons to OA observations that showed a 40% mean 345	
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contribution of isoprene to total OA. We conducted a sensitivity simulation using the default 346	

isoprene SOA mechanism in GEOS-Chem based on reversible partitioning of semivolatile 347	

oxidation products onto pre-existing OA (Pye et al., 2010). The isoprene SOA yield in that 348	

simulation was only 1.1%. The observed correlation of OA with HCHO in SEAC4RS supports 349	

our higher yield, as shown below. 350	

 351	

4. Observational constraints on isoprene SOA yields 352	

Isoprene is the largest source of HCHO in the Southeast US (Millet et al., 2006), and we 353	

use the observed relationship between OA and HCHO to evaluate the GEOS-Chem isoprene 354	

SOA yields. The SEAC4RS aircraft payload included measurements of OA from an Aerodyne 355	

Aerosol Mass Spectrometer (HR-ToF-AMS; DeCarlo et al, 2006; Canagaratna et al, 2007) 356	

concurrent with HCHO from a laser-induced fluorescence instrument (ISAF; Cazorla et al., 357	

2015). Column HCHO was also measured during SEAC4RS from the OMI satellite instrument 358	

(González Abad et al., 2015; Zhu et al., 2016), providing a proxy for isoprene emission (Palmer 359	

et al., 2003; 2006). 360	

Figure 3 (left) shows the observed and simulated relationships between OA and HCHO 361	

mixing ratios in the boundary layer. There is a strong correlation in the observations and in the 362	

model (R = 0.79 and R = 0.82, respectively). OA simulated with our aqueous-phase isoprene 363	

SOA mechanism reproduces the observed slope (2.8 ± 0.3 µg sm-3 ppbv-1, vs. 3.0 ± 0.4 µg sm-3 364	

ppbv-1 in the observations). Similarly strong correlations and consistency between model and 365	

observations are found with column HCHO measured from OMI (Fig. 3, right). The estimated 366	

error on individual OMI HCHO observations is about 30% (Millet et al., 2006). 367	
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Also shown in Fig. 3 is a sensitivity simulation with the default GEOS-Chem mechanism 368	

based on reversible partitioning with pre-existing organic aerosol (Pye et al., 2010) and 369	

producing a 1.1% mean isoprene SOA yield, as compared to 3.3% in our simulation with the 370	

aqueous-phase mechanism. That sensitivity simulation shows the same OA-HCHO correlation 371	

(R = 0.82) but underestimates the slope (2.0 ± 0.3 µg sm-3 ppbv-1). The factor of 3 increase in our 372	

isoprene SOA yield does not induce a proportional increase in the slope, as isoprene contributes 373	

only ~ 40% of OA in the Southeast US. But the slope is sensitive to the isoprene SOA yield, and 374	

the good agreement between our simulation and observations supports our estimate of a mean 375	

3.3% yield for the Southeast US. 376	

Figure 3 shows an offset between the model and observations illustrated by the regression 377	

lines. We overestimate HCHO by 0.4 ppbv on average because we did not apply the 15% 378	

downward correction to MEGAN v2.1 isoprene emissions (Zhu et al., 2016). We also 379	

underestimate total OA measured by the AMS in the boundary layer by 1.1 µg sm-3 (mean AMS 380	

OA is 5.8 ± 4.3 µg sm-3; model OA is 4.7 ± 4.4 µg sm-3). The bias can be explained by our 381	

omission of anthropogenic and open fire SOA, found by Kim et al. (2015) to account on average 382	

for 18% of OA in SEAC4RS.   383	

Figure 4 shows time series of the isoprene SOA components IEPOX SOA and C5-LVOC 384	

SOA at Centreville, Alabama during SOAS. AMS observations from Hu et al. (2015) and 385	

Krechmer et al. (2015) are compared to model values. IEPOX SOA and C5-LVOC SOA are on 386	

average 17% and 2% of total AMS OA, respectively (Hu et al., 2015; Krechmer et al., 2015). 387	

The model reproduces mean IEPOX SOA and C5-LVOC SOA without bias, supporting the 388	

conclusion that IEPOX is the dominant contributor to isoprene SOA in the Southeast US (Fig. 2).  389	
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Figure 5 shows the relationships of daily mean IEPOX SOA and sulfate concentrations at 390	

Centreville and in the SEAC4RS boundary layer. The same factor analysis method was used to 391	

derive IEPOX SOA in SEAC4RS as in SOAS, however the uncertainty is larger for the aircraft 392	

observations due to the much wider range of conditions encountered. There is a strong 393	

correlation between IEPOX SOA and sulfate, both in observations and the model, with similar 394	

slopes. Correlation between IEPOX SOA and sulfate has similarly been observed at numerous 395	

Southeast US monitoring sites (Budisulistiorini et al., 2013; 2015; Xu et al., 2015; Hu et al., 396	

2015). Xu et al. (2015) concluded that IEPOX SOA may form by nucleophilic addition of sulfate 397	

(sulfate channels in Eq. (2)) leading to organosulfates. However, we find in our model that the 398	

H+-catalyzed channel (kH+[H+] term in Eq. (2)) contributes 90% of IEPOX SOA formation 399	

throughout the Southeast US boundary layer, and that sulfate channels play only a minor role. 400	

The correlation of IEPOX SOA and sulfate in the model is because increasing sulfate drives an 401	

increase in aqueous aerosol volume and acidity. Although dominance of the H+-catalyzed 402	

channel is sensitive to uncertainties in the rate constants (Section 2), measurements from the 403	

PALMS laser mass spectrometer during SEAC4RS (Liao et al., 2015) show a mean IEPOX 404	

organosulfate concentration of 0.13 µg sm-3, amounting to at most 9% of total IEPOX SOA. The 405	

organosulfate should be a marker of the sulfate channels because its hydrolysis is negligibly slow 406	

(Hu et al., 2011).  407	

Correlation between IEPOX SOA and sulfate is also apparent in the spatial distribution of 408	

IEPOX SOA, as observed by the SEAC4RS aircraft below 2 km and simulated by GEOS-Chem 409	

along the aircraft flight tracks (Fig. 6). The correlation between simulated and observed IEPOX 410	

SOA in Fig. 6 is R = 0.70. Average (mean) IEPOX SOA is 1.4 ± 1.4 µg sm-3 in the observations 411	

and 1.3 ± 1.2 µg sm-3 in the model. The correlation between IEPOX SOA and sulfate is 0.66 in 412	
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the observations and 0.77 in the model. IEPOX SOA concentrations are highest in the industrial 413	

Midwest and Kentucky, and in Louisiana-Mississippi, coincident with the highest sulfate 414	

concentrations sampled on the flights. We also see in Fig. 6 frequent observations of very low 415	

IEPOX SOA (less than 0.4 µg sm-3) that are well captured by the model. These are associated 416	

with very low sulfate (less than 1 µg sm-3). 417	

The mean IEPOX SOA concentration simulated by the model for the SEAC4RS period 418	

(background contours in Fig. 6) is far more uniform than IEPOX SOA simulated along the flight 419	

tracks. This shows the importance of day-to-day variations in sulfate in driving IEPOX SOA 420	

variability. IEPOX SOA contributed on average 24% of total OA in the SEAC4RS observations, 421	

and 28% in GEOS-Chem sampled along the flight tracks and as a regional mean. With IEPOX 422	

SOA accounting for 58% of isoprene SOA in the model (Fig. 2), this amounts to a 41-48% 423	

contribution of isoprene to total OA, consistent with the previous estimate of 40% by Kim et al. 424	

(2015).  425	

 426	

5. Effect of Anthropogenic Emission Reductions 427	

The EPA projects that US anthropogenic emissions of NOx and SO2 will decrease 428	

respectively by 34% and 48% from 2013 to 2025 (EPA, 2014). We conducted a GEOS-Chem 429	

sensitivity simulation to examine the effect of these changes on isoprene SOA, assuming no 430	

other changes and further assuming that the emission decreases are uniform across the US.  431	

Figure 7 shows the individual and combined effects of NOx and SO2 emission reductions 432	

on the branching pathways for isoprene oxidation, sulfate mass concentration, aerosol pH, and 433	

isoprene SOA in the Southeast US boundary layer in summer. Reducing NOx emission by 34% 434	

decreases the mean NO concentration by only 23%, in part because decreasing OH increases the 435	
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NOx lifetime and in part because decreasing ozone increases the NO/NO2 ratio. There is no 436	

change in HO2. We find a 10% decrease in the high-NOx pathway and a 6% increase in the low-437	

NOx pathway involving ISOPO2 + HO2. Aerosol sulfate decreases by 2% and there is no change 438	

in [H+]. The net effect is a 7% increase in isoprene SOA, as the major individual components 439	

IEPOX SOA and glyoxal SOA increase by 17% and decrease by 8%, respectively.  440	

A 48% decrease in SO2 emissions drives a 36% reduction in sulfate mass concentration, 441	

leading to a decline in aerosol volume (31%) that reduces uptake of all isoprene SOA precursors. 442	

The decrease in aerosol [H+] (26%) further reduces IEPOX uptake. Decline in aerosol volume 443	

and [H+] have a comparable effect on IEPOX SOA, as the change in each due to SO2 emission 444	

reductions is similar (~30%) and uptake of IEPOX SOA is proportional to the product of the two 445	

(Section 4). IEPOX SOA and glyoxal SOA decrease by 45% and 26%, respectively, and total 446	

isoprene SOA decreases by 35%. Pye et al. (2013) included uptake of IEPOX to aqueous 447	

aerosols in a regional chemical transport model and similarly found that SO2 emissions are more 448	

effective than NOx emissions at reducing IEPOX SOA in the Southeast US. Remarkably, we find 449	

that reducing SO2 emissions decreases sulfate and isoprene SOA with similar effectiveness (Fig. 450	

7). With sulfate contributing ~30% of present-day PM2.5 in the Southeast US and isoprene SOA 451	

contributing ~25% (Kim et al., 2015), this represents a factor of 2 co-benefit on PM2.5 from 452	

reducing SO2 emissions.  453	

 454	

6. Conclusions 455	

Standard mechanisms for formation of isoprene secondary organic aerosol (SOA) in 456	

chemical transport models assume reversible partitioning of isoprene oxidation products to pre-457	

existing dry OA. This may be appropriate for dry conditions in experimental chambers but not 458	
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for typical atmospheric conditions where the aerosol is mostly aqueous. Here we developed an 459	

aqueous-phase reactive uptake mechanism coupled to a detailed gas-phase isoprene chemistry 460	

mechanism to describe the reactive uptake of water-soluble isoprene oxidation products to 461	

aqueous aerosol. We applied this mechanism in the GEOS-Chem chemical transport model to 462	

simulate surface (SOAS) and aircraft (SEAC4RS) observations over the Southeast US in summer 463	

2013. 464	

Our mechanism includes different channels for isoprene SOA formation by the high-NOx 465	

pathway, when the isoprene peroxy radicals (ISOPO2) react with NO, and in the low-NOx 466	

pathway where they react mostly with HO2. The main SOA precursors are found to be isoprene 467	

epoxide (IEPOX) in the low-NOx pathway and glyoxal in the high- and low-NOx pathways. Both 468	

of these precursors have dominant gas-phase photochemical sinks, and so their uptake by 469	

aqueous aerosol is nearly proportional to the reactive uptake coefficient γ and to the aqueous 470	

aerosol mass concentration. The γ for IEPOX is mostly determined by the rate of H+-catalyzed 471	

ring opening in the aqueous phase. 472	

 Application of our mechanism to the Southeast US indicates a mean isoprene SOA yield 473	

of 3.3% on a mass basis. By contrast, a conventional mechanism based on reversible uptake of 474	

semivolatile isoprene oxidation products yields only 1.1%. Simulation of the observed 475	

relationship of OA with formaldehyde (HCHO) provides support for our higher yield. We find 476	

that the low-NOx pathway is 5 times more efficient than the high-NOx pathway for isoprene SOA 477	

production. Under Southeast US conditions, IEPOX and glyoxal account respectively for 58% 478	

and 28% of isoprene SOA. 479	

 Our model simulates well the observations and variability of IEPOX SOA at the surface 480	

and from aircraft. The observations show a strong correlation with sulfate that we reproduce in 481	
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the model. We find this is due to the effect of sulfate on aerosol pH and volume concentration, 482	

increasing IEPOX uptake by the H+-catalyzed ring-opening mechanism. Low concentrations of 483	

sulfate are associated with very low IEPOX SOA, both in the observations and the model, and 484	

we attribute this to the compounding effects of low sulfate on aerosol [H+] and on aerosol 485	

volume. 486	

 The US EPA has projected that US NOx and SO2 emissions will decrease by 34 and 48% 487	

respectively from 2013 to 2025. We find in our model that the NOx reduction will increase 488	

isoprene SOA by 7%, reflecting greater importance of the low-NOx pathway. The SO2 reduction 489	

will decrease isoprene SOA by 35%, due to decreases in both aerosol [H+] and volume 490	

concentration. The combined effect of these two changes is to decrease isoprene SOA by 32%, 491	

corresponding to a decrease in the isoprene SOA mass yield from 3.3% to 2.3%. Decreasing SO2 492	

emissions by 48% has similar relative effects on sulfate (36%) and isoprene SOA (35%). 493	

Considering that sulfate presently accounts for about 30% of PM2.5 in the Southeast US in 494	

summer, while isoprene SOA contributes 25%, we conclude that decreasing isoprene SOA 495	

represents a factor of 2 co-benefit when reducing SO2 emissions.  496	
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TABLES 959	

Table 1. Constants for reactive uptake of isoprene SOA precursors a 960	
Species b H* [M atm-1] kH+ [M-1 s-1] knuc [M-2 s-1] kHSO4- [M-1 s-1] kaq [s-1] 

IEPOX 3.3 × 107, c 3.6 × 10-2, d 2.0 × 10-4, e 7.3 × 10-4, e Equation (2) 

ISOPNβ 
f 3.3 × 105, g        –        –        – 1.6 × 10-5, h 

ISOPNδ
 f 3.3 × 105, g        –        –        – 6.8 × 10-3, h 

DHDN 3.3 × 105, g        –        –        – 6.8 × 10-3, i 
a Effective Henry’s law constants H* and aqueous-phase rate constants used to calculate reactive uptake 961	
coefficients γ for isoprene SOA precursors IEPOX, ISOPNβ, ISOPNδ, and DHDN following Eqs. (1) and 962	
(2). Calculation of γ for other isoprene SOA precursors in Fig. 2 is described in the text.  963	
b See Fig. 2 for definition of acronyms. 964	
c Best fit to SOAS and SEAC4RS IEPOX SOA and consistent with Nguyen et al. (2014). 965	
d Cole-Filipiak et al. (2010). 966	
e Eddingsaas et al. (2010). 967	
f ISOPN species formed from the beta and delta isoprene oxidation channels (Paulot et al., 2009a) are 968	
treated separately in GEOS-Chem. 969	
g By analogy with 4-nitrooxy-3-methyl-2-butanol (Rollins et al., 2009).  970	
h Jacobs et al. (2014). 971	
i Assumed same as for ISOPNδ (Hu et al., 2011).  972	
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Table 2.  Mean reactive uptake coefficients γ of isoprene SOA precursors a 973	

Species b γ 
pH dependence c 

 pH > 3 2 < pH < 3 1 < pH < 2 0 < pH < 1 

IEPOX 4.2 × 10-3 8.6 × 10-7 2.0 × 10-4 1.1 × 10-3 1.0 × 10-2 

MEPOX 1.3 × 10-4 2.7 × 10-8 6.4 × 10-6 3.6 × 10-5 3.2 × 10-4 

ISOPNβ  1.3 × 10-7 – 

ISOPNδ
  5.2 × 10-5 – 

DHDN 6.5 × 10-5 – 

GLYX 2.9 × 10-3, d – 

MGLY 4.0 × 10-7 – 

C5-LVOC 0.1 – 

NT-ISOPN 0.1 – 
a Mean values computed in GEOS-Chem for the Southeast US in summer as sampled along the boundary-974	
layer (< 2 km) SEAC4RS aircraft tracks and applied to aqueous aerosol. The reactive uptake coefficient γ 975	
is defined as the probability that a gas molecule colliding with an aqueous aerosol particle will be taken 976	
up and react in the aqueous phase to form non-volatile products. 977	
b See Fig. 2 for definition of acronyms. 978	
c γ for IEPOX and MEPOX are continuous functions of pH (Eq. (2)). Values shown here are averages for 979	
different pH ranges sampled along the SEAC4RS flight tracks. Aqueous aerosol pH is calculated locally 980	
in GEOS-Chem using the ISORROPIA thermodynamic model (Fountoukis and Nenes, 2007).  981	
d Daytime value. Nighttime value is 5 × 10-6. 982	

983	
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FIGURES 984	
 985	

 986	

 987	

Figure 1. Yields of secondary organic aerosol (SOA) from isoprene oxidation as reported by 988	

chamber studies in the literature and plotted as a function of the initial NO concentration and 989	

relative humidity (RH). Yields are defined as the mass of SOA produced per unit mass of 990	

isoprene oxidized. For studies with no detectable NO we plot the NO concentration as half the 991	

reported instrument detection limit, and stagger points as needed for clarity. Data are colored by 992	

relative humidity (RH). The thick grey line divides the low-NOx and high-NOx pathways as 993	

determined by the fate of the ISOPO2 radical (HO2 dominant for the low-NOx pathway, NO 994	

dominant for the high-NOx pathway). The transition between the two pathways occurs at a 995	

higher NO concentration than in the atmosphere because HO2 concentrations in the chambers are 996	

usually much higher. Also shown as dashed line is the mean atmospheric yield of 3.3% for the 997	

Southeast US determined in our study.  998	
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 999	

Figure 2. Gas-phase isoprene oxidation cascade in GEOS-Chem leading to secondary organic 1000	

aerosol (SOA) formation by irreversible aqueous-phase chemistry. Only selected species relevant 1001	

to SOA formation are shown. Immediate aerosol precursors are indicated by dashed boxes. 1002	

Branching ratios and SOA yields (aerosol mass produced per unit mass isoprene reacted) are 1003	

mean values from our GEOS-Chem simulation for the Southeast US boundary layer in summer. 1004	

The total SOA yield from isoprene oxidation is 3.3% and the values shown below the dashed 1005	

boxes indicate the contributions from the different immediate precursors adding up to 3.3%. 1006	

Contributions of high- and low-NOx isoprene oxidation pathways to glyoxal are indicated. 1007	
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 1008	

Figure 3. Relationship of organic aerosol (OA) and formaldehyde (HCHO) concentrations over 1009	

the Southeast US in summer. The figure shows scatterplots of SEAC4RS aircraft observations of 1010	

OA concentrations in the boundary layer (< 2 km) vs. HCHO mixing ratios measured from the 1011	

aircraft (left), and column HCHO (ΩHCHO) retrieved from OMI satellite observations (right). 1012	

Individual points are data from individual SEAC4RS flight days (August 8 - September 10), 1013	

averaged on the GEOS-Chem grid. OMI data are for SEAC4RS flight days and coincident with 1014	

the flight tracks. GEOS-Chem is sampled for the corresponding locations and times. Results 1015	

from our simulation with aqueous-phase isoprene SOA chemistry are shown in red, and results 1016	

from a simulation with the Pye et al. (2010) semivolatile reversible partitioning scheme are 1017	

shown in blue. Aerosol concentrations are per m3 at standard conditions of temperature and 1018	

pressure (STP: 273 K; 1 atm), denoted sm-3. Reduced major axis (RMA) regressions are also 1019	

shown with regression parameters and Pearson’s correlation coefficients given inset. 1σ standard 1020	

deviations on the regression slopes are obtained with jackknife resampling.  1021	
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 1022	

 1023	

Figure 4. Time series of the concentrations of isoprene SOA components at the SOAS site in 1024	

Centreville, Alabama (32.94°N; 87.18°W) in June-July 2013: measured (black) and modeled 1025	

(red) IEPOX SOA (top) and C5-LVOC SOA (bottom) mass concentrations. Means and 1σ 1026	

standard deviations are given for the observations and the model.   1027	



	 41	

 1028	

Figure 5. Relationship of IEPOX SOA and sulfate concentrations over the Southeast US in 1029	

summer. Observed (black) and simulated (red) data are averages for each campaign day during 1030	

SOAS (left), and boundary layer averages (< 2 km) for 2° × 2.5° GEOS-Chem grid squares on 1031	

individual flight days during SEAC4RS (right). RMA regression slopes and Pearson’s correlation 1032	

coefficients are shown. 1σ standard deviations on the regression slopes are obtained with 1033	

jackknife resampling.  1034	
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 1035	

Figure 6. Spatial distributions of IEPOX SOA and sulfate concentrations in the boundary layer 1036	

(<2 km) over the Southeast US during SEAC4RS (August-September 2013). Aircraft AMS 1037	

observations of IEPOX SOA (top left) and sulfate (bottom left) are compared to model values 1038	

sampled at the time and location of the aircraft observations (individual points) and averaged 1039	

during the SEAC4RS period (background contours). Data are on a logarithmic scale. 1040	

1041	
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 1042	

 1043	

Figure 7. Effect of projected 2013-2025 reductions in US anthropogenic emissions on the 1044	

formation of isoprene secondary organic aerosol (SOA). Emissions of NOx and SO2 are projected 1045	

to decrease by 34% and 48%, respectively. Panels show the resulting percentage changes in the 1046	

branching of ISOPO2 between the NO and HO2 oxidation channels, sulfate mass concentration, 1047	

aerosol [H+] concentration, and isoprene SOA mass concentration. Values are summer means for 1048	

the Southeast US boundary layer. 1049	

 1050	


